Stratification of sunspot umbral dots from inversion of Stokes profiles recorded by Hinode

نویسندگان

  • T. L. Riethmüller
  • S. K. Solanki
چکیده

This work aims to constrain the physical nature of umbral dots (UDs) using high-resolution spectropolarimetry. Full Stokes spectra recorded by the spectropolarimeter on Hinode of 51 UDs in a sunspot close to the disk center are analyzed. The height dependence of the temperature, magnetic field vector, and line-of-sight velocity across each UD is obtained from an inversion of the Stokes vectors of the two Fe I lines at 630 nm. No difference is found at higher altitudes (−3 ≤ log(τ500) ≤ −2) between the UDs and the diffuse umbral background. Below that level the difference rapidly increases, so that at the continuum formation level (log(τ500) = 0) we find on average a temperature enhancement of 570 K, a magnetic field weakening of 510 G, and upflows of 800 m s for peripheral UDs, whereas central UDs display an excess temperature of on average 550 K, a field weakening of 480 G, and no significant upflows. The results for, in particular, the peripheral UDs, including cuts of magnetic vector and velocity through them, look remarkably similar to the output of recent radiation MHD simulations. They strongly suggest that UDs are produced by convective upwellings. Subject headings: Sun: photosphere — Sun: sunspots — techniques: spectroscopic

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The dependence of the magnetic field strength of a sunspot umbra on its intensity and brightness temperature

A partial decrease of the convective energy by the magnetic field of a sunspot causes the temperature of the magnetized plasma to decrease and this leads to a magneto-hydrostatic equilibrium. Thus, we expect a strong relation between magnetic field strength of a sunspot and its temperature/brightness. Here, we investigate this relation in the umbra of the large sunspot in NOAA10930 using spectr...

متن کامل

Characteristic Dependence of Umbral Dots on their Magnetic Structure

Umbral dots (UDs) were observed in a stable sunspot in NOAA 10944 by the Hinode Solar Optical Telescope on 2007 March 1. The observation program consisted of blue continuum images and spectropolarimetric profiles of Fe I 630 nm line. An automatic detection algorithm for UDs was applied to the 2-hour continuous blue continuum images, and using the obtained data, the lifetime, size, and proper mo...

متن کامل

A study on Ca II 854.2 nm emission in a sunspot umbra using a thin cloud model

In the present work, we introduce and explain a method of solution of the radiative transfer equation based on a thin cloud model. The efficiency of this method to retrieve dynamical chromospheric parameters from Stokes I profiles of Ca II 854.2 nm line showing spectral emission is investigated. The analyzed data were recorded with the Crisp Imaging Spectro-Polarimeter (CRISP) at Swedish 1-m So...

متن کامل

Magnetic Structure of Umbral Dots Observed with Hinode Solar Optical Telescope

High resolution and seeing-free spectroscopic observation of a decaying sunspot was done with the Solar Optical Telescope aboard Hinode satellite. The target was NOAA 10944 located in the west side of the solar surface from March 2 to March 4, 2007. The umbra included many umbral dots (UDs) with size of ∼300 km in continuum light. We report the magnetic structures and Doppler velocity fields ar...

متن کامل

Formation Process of a Light Bridge Revealed with the Hinode Solar Optical Telescope

The Solar Optical Telescope (SOT) aboardHINODE successfully and continuously observed a formation process of a light bridge in a matured sunspot of the NOAA active region 10923 for several days with high spatial resolution. During its formation, many umbral dots were observed emerging from the leading edges of penumbral filaments, and intruding into the umbra rapidly. The precursor of the light...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008